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LETTER TO THE EDITOR 

Singularity-structure analysis and Hirota's bilinearisation of 
the Davey-Stewartson equation 

S Ganesant and M Lakshmanani 
t Department of Physics, Government College of Technology, Coimbatore 641 013, India 
$ Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India 

Received 17 August 1987 

Abstract. The singularity-structure aspects of the Davey-Stewartson equation is investigated 
and i t  is shown that the system possesses the generalised Painlevi property in the sense 
of Weiss, Tabor and Carnevale. Further, the associated Backlund transformation i s  con- 
structed and Hirota's bilinearisation is obtained straightforwardly from the Painlev6 
analysis. 

The singular-point-structure analysis leading to the Painlev6 property for ordinary 
differential equations (Ablowitz et a1 1980) plays a very useful role in determining the 
integrability property of non-linear dynamical systems (Ramani et al1982, Lakshmanan 
and Sahadevan 1985). Weiss et a1 (1983) ( WTC) have generalised the Painleve test for 
partial differential equations ( P D E )  and this method is a useful tool for testing the 
integrability of non-linear PDE (Weiss 1983, 1984a, b, Steeb er a1 1984, Sahadevan el 
a1 1986, Clarkson et a1 1986). In this letter, we present a singularity-structure analysis 
of the Davey-Stewartson equation describing the two-dimensional lumps in non-linear 
dispersive systems (Anker and Freeman 1978, Satsuma and Ablowitz 1979) given by 

( l a )  

(1b) 
where U( = 5 1 ,  i = 1, 2 ,  and show that (1) is free from movable critical singularity 
manifolds. A PDE is said to possess the Painleve property if its solution can be expressed 
as a single-valued expansion about its 'non-characteristic' movable singularity manifold 

iA, -ulA, ,  + A , ,  = u2AIAI'+2u,uzQA 

(+I Q,, + 0, I + ( /AI2) li'; = 0 

4 ( Z I , Z * , . . . , Z , , ) = O .  (2) 
Thus, the solution U = U( z I  , z 2 ,  . . . , z,,) of the P D E  is single valued and admits a Laurent 
series expansion around the singularity manifold + ( z I ,  z,, . . . , z , )  = O  as 

where U, = u J ( z I ,  zz, . . . , z,,), U,# 0, are analytic functions of ( z , )  in the neighbourhood 
of the manifold ( 2 )  and (Y is an integer. 

In order to investigate the singularity structure of ( l ) ,  we make a substitution 
A = R + is where R and S are reals. Then (1) takes the form 

R ,  -(TIS,, + S , ,  - u ~ S (  R 2 +  S2) - ~ u I u Z Q S =  0 

S, + U,  R,, - R , ,  + U, R ( R z  + S2) + 2 ~ 1 ~ 2  Q R  = 0 

u1 Qxl- + Q,,, + 2( RR, ,  + SS, ,  + R: + St) = 0. 

( 4 a )  

(4b) 

(4c) 
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The PainlevC test for the PDE proceeds essentially along four main stages: (i) determina- 
tion of leading-order behaviours, (ii) identifying the powers at  which the arbitrary 
functions can enter, called resonances, (iii) verifying that a sufficient number of arbitrary 
functions exist without the introduction of algebraic and logarithmic singularity mani- 
folds, and  (iv) establishing the connections with other integrability properties. 

Let us assume that the leading orders of the solutions of (4) be 

R = R04" s = s o 4 p  Q 004' ( 5 )  

where R, ,  S,  and Qo are analytic functions of (x, y ,  t )  and a, p, y are integers to be 
determined. On substituting (5) into (4) and equating the most singular terms we have 

a = p = - 1  y = - 2  (6) 

and from (4a) and (4b) we obtain a condition 

2( V I  4: - 4:,) + ~ 2 (  R:+ Si) + ZV,V,Q, = 0 

(V,4:+ & ) Q ~ + ( R ; + s ; ) + :  =o. (7b )  

( 7 a )  

and from (4c) we have 

Thus at this stage, we infer from (7) that one of the functions, say R,, or So, is arbitrary 
and also we have, 

( R : + S : )  = ( 2 / 4 b , + : + 4 3  Qo= - ( 2 / ~ 2 ) 4 : .  (8) 

For finding the resonances, we make a Laurent series expansion 

(9) 
X 

Q = Q ~ ~ - ~ +  C Q , ~ I - ~  
1 2 1  

and use it in (4) retaining leading-order terms only. 
As a result, we obtain the matrix equation 

j = -1, 0, 2, 3, 3 ,  4. (11) 

Obviously, the resonance value at j = -1 represents the arbitrariness of the singularity 
manifold +(x, y ,  t )  = 0, while the resonance at  j = 0 is associated with the arbitrariness 
of the functions R,, or So as seen in (8). 
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Proceeding further to the coefficients (4' ,  #O, I$-'), we have 

( R o R , +  SoS3+alQ,)  = { - ( 1 / 2 a z R o ) [ S i ,  + S24r + ( ~ ~ R l x x  - R I , )  + ( u 1 4 x x  - 4py)Rz 

+ 2(aiRz.xd.Y - R z j 4 y )  + 2 ~ 2 R 2 ( R o R 1 +  SoSi) +2c+zR1(RoRz+ SOS,) 

+ 2(+zRo( R I R* + Si S2) + a2R 1 ( R + S:) + 2 ~ 1 ( + 2 (  RI Qz + Rz Qi )I} ( 16a 

( RoR3 + SOS, + ai Q 3 )  = I ( 1 / 2 ~ 2 S o ) [  R I r + R24r - ( UI SI xx -  SI.^?' - 4 x x  - 4y.v  

-2(ulS2.x4x -S2&) - 2 ~ z S A S o S 1  + RORI) --2(+2SI(SOS2+ R o R d  

- 20-2So( SI S ,  + RI R , )  - a2Sl ( R :  + S:) - 2 ~ I u 2 (  SI Qz + SzQl)]}. ( 16b) 

Again one of the functions, say Q,, is arbitrary. Since we have a double resonance 
at j = 3 we require further that either R 3  or S3 is arbitrary. The actual demonstration 
of this fact becomes quite tedious for the general manifold. Instead, we have used the 
Kruskal ansatz (Tabor and Gibbon 1986) which simplifies the computations. Assuming 
d ( x ,  y ,  t )  = {x-* f (y,  c ) }  and substituting (8), (13) and  (15) into the right-hand sides of 
(16a, 6), we find that they are identical and  hence the function R 3  (or S,) becomes 
arbitrary. Proceeding further to the coefficients of ( + I ,  d', 4') we have checked that 
one of the functions of R , ,  S4 or Q4 is arbitrary. Thus the general solution 
{ R ( x ,  y ,  t ) ,  S ( x ,  y ,  t ) ,  Q(x, y ,  t ) }  of (4) admits the required arbitrary functions without 
the introduction of movable critical manifolds and hence the PainlevC property is 
satisfied for the Davey-Stewartson equation and hence the system (1) is expected to 
be integrable. Anker and Freeman (1978) have shown that the system (1) belongs to 
the class of non-linear evolution equation where IST is applicable and  also the integrabil- 
ity has been discussed by Fokas and Papageorgiou (1987). 

Now, we wish to construct the associated Backlund transformations of the Davey- 
Stewartson equation. For this purpose, we truncate the series up  to the constant-level 
term, that is R, = S, = 0,  j 3 2 and Q, = 0, j 3 3. Thus from (9) we have 

(17) 

where ( R ,  R I ) ,  (S, SI) and  (0, Q 2 )  satisfy (4) with ( R o ,  So,  Qo) satisfying (7) and the 
remaining 4 coefficients equated to zero ( Q1 = 2~7;I4,~,). 

Without loss of generality, we consider the vacuum solutions R I  = SI = Q2 = 0 in 
the Backlund transformation (17). Then we have 

R = R ~ ) ~ - I +  R ,  s = S04 - I + SI 0 = 004 - *  + Q I  4 - I  + Q2 

On substituting (18c) and (18d)  in the original equation (1) and making use of the 
Hirota D operators (Hirota 1974, 1980) 

D% 4 = DY 1 ( g x 4 - g 4 x )  

( d 2 / d x 2 ) ( l o g  4 )  = ( 1 / W 2 ) D ; 4 .  4 

(19a)  

(196) 
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we obtain the following Hirota bilinear form of the Davey-Stewartson equation (1) 
straightforwardly as 

(iD,-cr,DZ,+D:-(+?Y’)g. 4 = O  (20a)  

where Y = constant. 
I f  we expand g and 4 as power series (Hiota 1974) and use them in (20) we can 

construct the N-soliton solution in the usual way. Similar bilinearisation (20) has also 
been reported by Satusma and Ablowitz (1979). 

The work of M Lakshmanan forms part of a Department of Science and Technology, 
Government of India sponsored research project. 
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